
Noisy Derivative-Free Optimization
with Value Suppression∗

Hong Wang, Hong Qian, Yang Yu
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China

waghon@outlook.com, {qianh,yuy}@lamda.nju.edu.cn

Abstract

Derivative-free optimization has shown advantage in solving
sophisticated problems such as policy search, when the en-
vironment is noise-free. Many real-world environments are
noisy, where solution evaluations are inaccurate due to the
noise. Noisy evaluation can badly injure derivative-free opti-
mization, as it may make a worse solution looks better. Sam-
pling is a straightforward way to reduce noise, while previous
studies have shown that delay the noise handling to the com-
parison time point (i.e., threshold selection) can be helpful
for derivative-free optimization. This work further delays the
noise handling, and proposes a simple noise handling mech-
anism, i.e., value suppression. By value suppression, we do
nothing about noise until the best-so-far solution has not been
improved for a period, and then suppress the value of the
best-so-far solution and continue the optimization. On syn-
thetic problems as well as reinforcement learning tasks, ex-
periments verify that value suppression can be significantly
more effective than the previous methods.

Introduction

Solving sophisticated and complex optimization tasks plays
a crucial role in artificial intelligence. Let f : X ⊆ R

n → R

be an objective function and we assume that a global min-
imum value x∗ always exists. An optimization task can
be formulized as x∗ = argminx∈X f(x). This paper re-
gards f as a black-box function and focuses on derivative-
free optimization methods. Namely, f can be evaluated
point-wisely, and optimization methods are performed only
on the basis of the function values f(x) and the sam-
pled solutions x. Because derivative-free methods do not
rely on derivatives, they are especially suitable for sophis-
ticated optimization problems which have many local op-
tima and are non-differentiable. Successful examples in-
clude hyper-parameter tuning in machine learning, direct
policy search in reinforcement learning, and scientific exper-
iments (Snoek, Larochelle, and Adams 2012; Hu, Qian, and
Yu 2017; Parkinson, Mukherjee, and Liddle 2006). Under

∗This research was supported by National Key Research and
Development Program (2017YFB1001903), NSFC (61422304),
Jiangsu SF (BK20170013), and Collaborative Innovation Center
of Novel Software Technology and Industrialization.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

noise-free environments (i.e., solution evaluations are ac-
curate), derivative-free optimization methods have achieved
desirable and impressive performance. However, many real-
world environments are noisy and we can only access noisy
objective function fN (x) instead of true objective function
f(x). For example, every prototype is evaluated by simula-
tions in industrial design such as VLSI design (Guo et al.
2014). The result is inaccurate due to the simulation error.
And the evaluation of a prediction model in machine learn-
ing can be inaccurate because of the limited amount of data
it uses (Qian, Yu, and Zhou 2015b). Inaccurate solution eval-
uations resulting from noise can badly injure derivative-free
optimization methods, since it may make a worse solution
looks better and mislead the search process.

There are two popular mechanisms to handle noise in
derivative-free optimization: sampling and threshold selec-
tion equipped with re-evaluation. Sampling is a straightfor-
ward way to reduce noise (Arnold and Beyer 2006). It inde-
pendently evaluates a given solution multiple times, and then
uses the average of noisy function values to approximate
the true function value. In order to achieve relatively accu-
rate estimate of true function value, more sample size (i.e.,
times of function evaluations) is needed. Since in derivative-
free optimization function evaluation often requires expen-
sive computational and time cost (He and Yao 2001; Yu and
Zhou 2008), thus, the time and computational cost of sam-
pling is high. Another popular mechanism to handle noise is
threshold selection equipped with re-evaluation (Markon et
al. 2001; Beielstein and Markon 2002; Jin and Branke 2005;
Goh and Tan 2007; Gießen and Kötzing 2016). It inde-
pendently reevaluates solutions whenever the comparison
among solutions occurs, and replaces an old solution only
when the value of a new solution is smaller than that of
the old one by at least a fixed or dynamic threshold value.
This mechanism delays the noise handling to the compari-
son time, and has been shown to be helpful for derivative-
free optimization (Qian, Yu, and Zhou 2015a). Compared
with sampling, due to the delay of noise handling, threshold
selection equipped with re-evaluation requires less compu-
tational and time cost and seems to be more efficient.

In this paper, we further delay the noise handling in
derivative-free optimization process, and propose a generic,
simple yet efficient noise handling mechanism called value
suppression. This mechanism can cooperate with most

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

1447

derivative-free optimization methods. By value suppression,
we do nothing about noise until the best-so-far solution
has not been improved for a period, and then suppress the
value of the best-so-far solution and continue the optimiza-
tion. The value suppression mechanism can not only help
derivative-free optimization keep updating their best-so-far
solutions, but also record some suppressed solutions, from
which we can pick up the best solution whose value is more
reliable. Compared with sampling and threshold selection
equipped with re-evaluation, value suppression may require
least computational and time cost and still be effective. Fur-
thermore, we inject this mechanism into one state-of-the-art
derivative-free algorithm SRACOS (Hu, Qian, and Yu 2017),
and result in the suppressed SRACOS (SSRACOS) for opti-
mization under noise. To compare value suppression with
the other mechanisms on SRACOS, we conduct experiments
on two synthetic functions and controlling tasks of rein-
forcement learning in OpenAI Gym. Experimental results
indicate that, for noisy derivative-free optimization, the pro-
posed value suppression mechanism can improve the perfor-
mance of SRACOS more significantly than the others.

The consequent sections respectively introduce the related
work, describe the proposed value suppression mechanism
for noisy optimization, present the empirical results, and fi-
nally conclude the paper.

Related Work
Handling noise for derivative-free optimization, there are
two main mechanisms: sampling and threshold selection
equipped with re-evaluation.

Sampling. One popular mechanism to reduce noise is
sampling (Arnold and Beyer 2006). Given a solution x ∈ X ,
it independently evaluates this solution n times, and then
uses the average of noisy function values to approximate the
true function value (i.e., f(x) ≈ 1

n

∑n
i=1 f

N (x)). Sampling
can reduce the standard deviation of noise and make the
value estimation closer to true value. In order to achieve rel-
atively accurate estimate of true function value, more sam-
ple size (i.e., times of function evaluations) is needed. Since
in derivative-free optimization function evaluation often re-
quires expensive computational and time cost (He and Yao
2001; Yu and Zhou 2008), thus, the time and computational
cost of sampling is high. To reduce the cost of sampling,
many smart sampling strategies have been proposed like
adaptive and sequential ways, which decide n in each it-
eration dynamically (Aizawa and Wah 1994; Stagge 1998;
Branke and Schmidt 2004). However, these smart sampling
strategies handle noise at once without delay, and thus their
cost is still relative high.

Threshold Selection Equipped with Re-evaluation. An-
other popular mechanism to handle noise is threshold se-
lection equipped with re-evaluation (Markon et al. 2001;
Beielstein and Markon 2002; Bartz-Beielstein 2005; Jin and
Branke 2005; Goh and Tan 2007; Doerr, Hota, and Kötz-
ing 2012). It independently reevaluates solutions whenever
the comparison among solutions occurs, and replaces an old
solution only when the value of a new solution is smaller
than that of the old one by at least a threshold value τ . re-
evaluation can prevent the fake better solutions misleading

the searching, as they are reevaluated and the fake advan-
tage resulting from noise will be reduced with high proba-
bility. Threshold selection can reduce the risk of accepting a
bad solution resulting from noise, and increase the chance of
keeping good solutions. Choosing a proper threshold value
is crucial. It usually requires domain knowledge (Qian, Yu,
and Zhou 2015a). Recently, parent populations technique,
which can be regarded as adjusting threshold dynamically,
is proposed (Gießen and Kötzing 2016). It maintains a set
of best-so-far solutions, so as long as a solution is better
than the worst one in the set, it will be kept even though
it is worse than the best solution. Utilizing threshold se-
lection alone has the negative effect that if some fake bet-
ter solution is accepted, it will be hard to rule it out (Qian,
Yu, and Zhou 2015a). Hence, threshold selection equipped
with re-evaluation is more desirable. This mechanism de-
lays the noise handling to the comparison time, and has been
shown to be helpful for derivative-free optimization (Qian,
Yu, and Zhou 2015a). Compared with sampling, due to the
delay of noise handling, threshold selection equipped with
re-evaluation requires less computational and time cost and
seems to be more efficient.

In a nutshell, sampling mechanism provides a way to
evaluate solutions more accurately. But it takes expensive
computational and time cost, and may lose its power and
be inefficient when the solution evaluations budget is lim-
ited. Threshold selection equipped with re-evaluation shares
the merit of threshold selection helping reduce the risk of
good solution being replaced by fake better solutions, and
re-evaluation helping rule out some fake better solution. This
mechanism delays the noise handling to the comparison time
point, and thus requires less computational and time cost
and seems to be more efficient. On the other hand, since re-
evaluation is computationally expensive (a solution may be
evaluated multiple times), there still exists room to further
improve the efficiency.

Value Suppression for Noisy Optimization

In this section, we first introduce the proposed generic value
suppression mechanism, and show how it can be applied to
derivative-free algorithms. Compared with other two popu-
lar noise handling mechanisms, it needs less computational
cost (i.e., less function evaluations). Then, we embed the
value suppression in one state-of-the-art derivative-free op-
timization algorithm SRACOS (Hu, Qian, and Yu 2017), and
result in the suppressed SRACOS (SSRACOS).

Value Suppression

This paper considers minimization problems in noisy envi-
ronments. The idea of value suppression arises from the phe-
nomenon that if an algorithm has not updated its best-so-far
solution for a period, then the observed value of the best-so-
far solution is likely to be much smaller than its true value.
Thus we suppress the value of the best-so-far solution when
it stays the best-so-far for a long period, then the algorithm
could be resumed to work and find a better solution.

The principle of value suppression is to suppresses the
overestimated value towards the true value. One way to im-

1448

plement this is to re-sample the value of the solution suf-
ficient times, in the situation of unbiased random noise. In
other situations, the suppression can be implemented by,
e.g., multiplying a discount factor.

This simple mechanism can help the algorithm keep gen-
erating new solutions with better observed values. How-
ever, when the optimization finishes, the algorithm needs to
choose the best solution among those it has generated. Since
most of the solutions have only a noisy observed value, we
thus only choose the best solution from the suppressed solu-
tions whose values are more reliable.

Algorithm 1 Value Suppression Framework for Derivative-
Free Optimization
Input:

fN : Noisy objective function.
Procedure:

1: S = generate a set of solutions and evaluate them
2: S+ = best k solutions in S
3: while termination condition is not met do
4: x = generate a new solution based on S+

5: evaluate x and use it to update S+

6: if S+ does not update for a period then
7: suppress the function values of solutions in S+

8: end if
9: end while

10: return the best among all the suppressed solutions

The value suppression mechanism can be easily applied
to derivative-free optimization algorithms which keep track-
ing the best-so-far solution. The framework of derivative-
free optimization with the value suppression is shown in Al-
gorithm 1. Firstly, the algorithm samples a set of solutions
S and evaluates them (line 1). Let S+ denote the best k so-
lutions in S (line 2). In the following loop, the algorithm
generates a new solution based on S+, evaluates it and uses
it to update S+ (line 4 to 5). If S+ does not update for a
period, it suppresses the values of these samples in S+ by
re-sampling, and saves these suppressed solutions (line 6 to
8). At last, the algorithm returns the best among all the sup-
pressed solutions (line 10).

Under mild conditions, we can prove that Algorithm 1 is
convergent. This indicates that the value suppression does
not hurt optimization and is effective.

Theorem 1 (Convergence). For a derivative-free optimiza-
tion algorithm A that generates any solution x ∈ X with
non-zero probability, assume that the noise follows the same
i.i.d. and unbiased distribution for all solutions, and the
value suppression assigns the true value to the solution, then
the algorithm A with value suppression is convergent under
noise, i.e., with probability 1 it will eventually output the op-
timal solution x∗.

Proof. By the assumption, once the true optimal solution x∗
is generated during optimization under noise, x∗ could be
better than the best-so-far solution with a non-zero prob-
ability. Thus, by Algorithm 1, x∗ could be absorbed into
S+ with probability 1 after a sufficient number of steps. Let

Algorithm 2 SRACOS

Input:
f : Objective function to be minimized;
C: A binary classification algorithm;
λ: Balancing parameter;
m ∈ N

+: Sample size in each iteration;
k ∈ N

+(≤ m): Number of positive samples;
r = m+ k;
N ∈ N

+: Budget;
Sampling: Sampling sub-procedure;
Selection: Decide the positive/negative solutions;
Replace: Replacing sub-procedure.

Procedure:
1: Collect S = {x1, . . . , xr} by i.i.d. sampling from UX
2: B = {(x1, y1), . . . , (xr, yr)}, ∀xi ∈ S : yi = f(xi)
3: (B+, B−) = Selection(B; k)
4: Let (x̃, ỹ) = argmin(x,y)∈B+ y
5: for t = r + 1 to N do
6: h = C(B+, B−)

7: x =

{
Sampling(UDh

) w.p. λ
Sampling(UX) w.p. 1− λ

8: y = f(x)
9: [(x′, y′), B+] = Replace((x, y), B+, ‘strategy P’)

10: [, B−] = Replace((x′, y′), B−, ‘strategy N’)
11: (x̃, ỹ) = argmin(x,y)∈B+∪{(x̃,ỹ)} y
12: end for
13: return (x̃, ỹ)

S′ denote the set of suppressed solutions and is initialed as
S′ = ∅. For a fixed maximum allowed non-update iterations
u, there exists a non-zero probability that S+ will not be
updated during u iterations, and thus x∗ could be further ab-
sorbed into S′ with probability 1 after a sufficient number
of steps. By Algorithm 1, the solutions cannot be removed
from S′ once absorbed into. Note that the value suppression
step for solutions in S′ discloses the true function values as
assumed. Since the algorithm will finally return the best in
S′, i.e., x∗, thus the value suppression is convergent.

SSRACOS: SRACOS with Value Suppression

We implement the generic value suppression framework
with one state-of-the-art derivative-free optimization algo-
rithm SRACOS (Hu, Qian, and Yu 2017). The procedure of
SRACOS is presented in Algorithm 2. SRACOS maintains
two sets of solutions: good solutions set (positive set) and
bad solutions set (negative set). A binary classifier is trained
on the basis of these two solution sets to learn the potential
high-quality region in the solution space. The learned region
contains one selected good solution in the positive set and
rules out all the bad solutions in the negative set. After that,
a new solution is uniformly sampled from this learned re-
gion with high probability or uniformly sampled from the
whole solution space with the remaining probability. Then,
SRACOS evaluates this new sampled solution and updates
both the positive and negative sets.

1449

Algorithm 3 Suppressed SRACOS (SSRACOS)
Input: (extra input than SRACOS)

u ∈ N
+: Maximum allowed non-update iterations;

v ∈ N
+: Re-sample size;

α: Balancing parameter;
Re-sample: Re-sample sub-procedure.

Procedure:
1: initialize SRACOS
2: BS = ∅
3: for t = r + 1 to N − v do
4: (x, y) = generate a new solution as in SRACOS
5: use (x, y) to update B+, B−, (x̃, ỹ) in SRACOS
6: if B+ does not update for u iterations then
7: for (xi, yi) in B+ do
8: ŷi = Re-sample(xi, v)
9: yi = (1− α)yi + αŷi

10: BS = BS ∪ {(x, ŷi)}
11: t = t+ v
12: end for
13: end if
14: end for
15: re-sample (x̃, ỹ) and put it in BS

16: return argmin(x,ŷ)∈BS ŷ

To initialize, SRACOS samples a batch of solutions and
evaluates their function values to form a solution-value tuple
set B (line 1 to 2). After that, Selection sub-procedure
is used to split B into B+ and B− according to the function
values of solutions, where the positive set B+ is consisted
of the best k solutions and the negative set B− is consisted
of the rest (line 3). The best-so-far solution-value tuple is
recorded (line 4). In the following loop, SRACOS trains a bi-
nary classifier C to learn a region which contains a randomly
selected positive solution in B+ and rules out all the neg-
ative solutions in B− (line 6). More details about the clas-
sifier C can be found in (Yu, Qian, and Hu 2016). Then, a
new solution is uniformly sampled from this learned region
with probability λ or uniformly sampled from the whole so-
lution space with probability 1 − λ (line 7). The function
value of this new sampled solution is evaluated (line 8), and
B+, B−, as well as the best-so-far solution-value tuple are
updated accordingly (line 9 to 11). Replace(a,A, ‘s’) sub-
procedure replaces a tuple in the set A with a according to
a strategy ‘s’. There are three strategies which are proposed
in (Hu, Qian, and Yu 2017): replacing the worst solution in
A (WR-), replacing a solution in A randomly (RR-), and
replacing the solution in A which has the largest margin
from the best-so-far solution (LM-). Note that ‘strategy P’
can only be ‘WR-’, and ‘strategy N’ can be any one of these
three strategies. At last, the best found solution-value tuple
(x̃, ỹ) is returned as output (line 13).

We now show how to inject the proposed value suppres-
sion into SRACOS, and result in the suppressed SRACOS
(SSRACOS). Since we can observe the positive set B+ in
SRACOS, if B+ does not update for a period, we suppress
these solutions in B+. In the end, the best solution among all
the suppressed ones is returned as output. The procedure of

SSRACOS is presented in Algorithm 3. The set BS is used
to collect the suppressed solutions and is initialized as the
empty set (line 2). During the loop, after generating a new
solution and updating B+, B−, (x̃, ỹ), SSRACOS checks if
the positive set B+ has been updated (line 6). If it does not
update for u iterations, SSRACOS re-samples the solutions
in B+, suppresses their values, and saves them with their
mean values ŷ in BS (line 7 to 12). Re-sample(x, n) sub-
procedure computes fN (x) for n times independently, and
returns the mean value ŷ. After that, it re-samples the best-
so-far solution (x̃, ỹ) and saves it in BS (line 15). At last,
the best solution in BS is returned (line 16).

Experiments
This section shows the effectiveness of the value suppression
mechanism in reducing the negative effect of noise and sav-
ing the cost empirically. The value suppression is compared
with the other noise handling mechanisms mentioned above.
We inject these mechanisms into SRACOS respectively.
Specifically, SSRACOS with the number of solutions in the
positive set #B+ > 1 is abbreviated to VS. SRACOS with
#B+ > 1 is abbreviated to MPS. SRACOS with #B+ = 1
is abbreviated to NO MPS. SSRACOS with #B+ = 1 is ab-
breviateNd to VS+NO MPS. SRACOS equipped with sam-
pling is abbreviated to SAMPLING. SAMPLING evaluates
a solution n times and uses the average value to approximate
its true function value (Arnold and Beyer 2006). SRACOS
equipped with re-evaluation is abbreviated to REEVAL.
REEVAL makes an independent evaluation of a solution
whenever the function value is required (Jin and Branke
2005; Goh and Tan 2007; Doerr, Hota, and Kötzing 2012).
SRACOS equipped with threshold selection is abbreviated
to TS. TS regards a solution better than another only when
its function value is better than that of another by at least
a threshold τ (Markon et al. 2001; Beielstein and Markon
2002; Bartz-Beielstein 2005). SRACOS equipped with the
combination of re-evaluation and threshold selection is ab-
breviated to REEVAL+TS.

We conduct experiments on both synthetic functions and
reinforcement learning controlling tasks in OpenAI Gym to
investigate their ability of noise handling. Additive Gaus-
sian noise is used to create a noisy environment for syn-
thetic functions. OpenAI Gym environment is considered to
be noisy because a policy has different total rewards under
different initial states (more details can be found in the sub-
section of On Controlling Tasks in OpenAI Gym). In addi-
tion to the noise from the original environment, we also add
extra Gaussian noise to observe their performances under
different noise levels. Moreover, we also analysis the sen-
sitivity of the hyper-parameter maximum non-update itera-
tions u on OpenAI Gym tasks.

On Synthetic Functions

We choose Ackley function and Sphere function to investi-
gate the ability of noise handling for each mechanism. Ack-
ley function is defined as:

f(x) =− 20e(−
1
5

√
1
n

∑n
i=1 (xi−0.2)2)

− e
1
n

∑n
i=1 cos 2π(xi−0.2) + e+ 20,

1450

Table 1: The function value for each noise handling mechanism. For Ackley function, we set the dimension size n = 100 and
1000, the standard deviation of noise σ = 0.1. For Sphere function, we set the dimension size n =100 and 1000, the standard
deviation of noise σ = 1. The number of function evaluations is set to be 200, 000.

Function DimSize Noise VS VS+NO MPS SAMPLING MPS REEVAL+TS REEVAL TS NO MPS

Ackley 100 0.1 0.93 2.43 1.32 2.95 3.71 3.82 3.75 3.69
Ackley 1000 0.1 3.82 3.90 3.93 3.96 3.99 4.01 4.01 3.99

Sphere 100 1 4.17 7.41 6.53 8.74 20.65 24.07 24.88 15.41
Sphere 1000 1 72.41 104.81 81.78 97.16 196.14 246.22 294.42 172.98

and Sphere function is defined as:

f(x) =

n∑
i=1

(xi − 0.2)2.

We choose the dimension sizes n = 100 and 1000 for
both functions in the experiment. To create a noisy environ-
ment, we use additive Gaussian noise, i.e., the noisy function
fN (x) = f(x) + N (0, σ2). For Ackley function, the stan-
dard deviation σ = 0.1, and for Sphere function σ = 1.

The parameters of these noise handling mechanisms are
set as follows. For threshold selection, we set the thresh-
old value τ = σ, because a solution that passes the thresh-
old may be truly better with high probability. For MPS, the
number of positive solutions is set to be 5, which is a trade-
off between the computational cost and the chance of keep-
ing good solutions. For sampling, the sample size is set to
be 10, which is a trade-off between the accuracy of func-
tion evaluation and the computational cost. For value sup-
pression, we set the maximum allowed non-update iterations
u = 500, the re-sample size v = 100, and the balance pa-
rameter α = 0.5. Other parameters are set as default.

For each setting with different dimension size n or stan-
dard deviation of noise σ, we run each mechanism 10 times
independently to minimize the noisy function fN (x). The
total number of function evaluations is set to be 200, 000.
The true function value f(x) of the best found solution dur-
ing the process is shown in Figure 1, and the true function
value of the returned best found solution at last is listed in
Table 1. SRACOS with the number of solutions in the pos-
itive set #B+ = 1 (NO MPS) is chosen as the baseline.
From the results, we can find that VS achieves the best per-
formance in all the settings. SAMPLING and MPS show
a similar performance and are able to reduce the effects
of noise. VS+NO MPS performs better than MPS, and is
competitive with SAMPLING. However, REEVAL, TS and
REEVAL+TS are worse than the baseline or not significantly
different. From Figure 1, we can observe that VS needs sig-
nificantly less iterations to achieve a good performance than
the other mechanisms. Specifically, on the Ackley function
with dimension size 100 and noise level 0.1, we can find
that VS only needs less than half function evaluations to
have the function value reach below 2 compared with the
second best mechanism SAMPLING. This indicates that the
the proposed VS mechanism is able to significantly reduce
the computational and time cost.

1

2

3

4

fu
n
c
ti
o
n

va
lu

e

Ackley,n=100,sigma=0.1

VS

VS+NO MPS

SAMPLING

MPS

REEVAL+TS

TS

REEVAL

NO MPS

3.85

3.90

3.95

4.00

Ackley,n=1000,sigma=0.1

50000 100000 150000 200000

function evaluations

10

20

fu
n
c
ti
o
n

va
lu

e

Sphere,n=100,sigma=1

50000 100000 150000 200000

function evaluations

100

200

300

Sphere,n=1000, sigma=1

Figure 1: The function value of each noise handling mecha-
nism during the optimization process. For Ackley function,
we set the dimension size n = 100 and 1000, the standard
deviation of noise σ = 0.1. For Sphere function, we set the
dimension size n = 100 and 1000, the standard deviation of
noise σ = 1.

Table 2: Parameters of the Gym tasks
Task dState #Actions NN nodes #Weights Horizon

Acrobot-v1 6 1 5, 3 48 500
MountainCar-v0 2 1 5 15 200
HalfCheetah-v1 17 6 10 230 1,000
Humanoid-v1 376 17 25 9825 1,000
Swimmer-v1 8 2 5, 3 61 1,000

Ant-v1 111 8 15 1785 1,000
Hopper-v1 11 3 9, 5 159 1,000

LunarLander-v2 8 1 5, 3 58 1,000

On Controlling Tasks in OpenAI Gym

OpenAI Gym provides a toolkit for reinforcement learning
research (https://gym.openai.com). There are many control-
ling tasks, from which we choose Acrobot, MountainCar,
HalfCheetah, Humanoid, Swimmer, Ant, Hopper, and Lu-
narLander to compare the ability of reducing the effects of
noise for each noise handling mechanism.

We use the framework of direct policy search to solve
these tasks. Direct policy search applies optimization algo-
rithms to search on the parameter space of a policy which is

1451

0.0 0.2 0.4 0.6 0.8 1.0
extra noise

−200

−180

−160

−140

−120

−100

−80

a
c
c
u
m

u
la

te
d

re
w

a
rd

VS

MPS

SAMPLING

REEVAL+TS

REEVAL

TS

(a) Acrobot-v1

0.0 0.2 0.4 0.6 0.8 1.0
extra noise

−200

−190

−180

−170

−160

−150

−140

a
c
c
u
m

u
la

te
d

re
w

a
rd

(b) MountainCar-v0

0.0 0.2 0.4 0.6 0.8 1.0
extra noise

400

600

800

1000

1200

1400

1600

1800

2000

a
c
c
u
m

u
la

te
d

re
w

a
rd

(c) HalfCheetah-v1

0.0 0.2 0.4 0.6 0.8 1.0
extra noise

400

410

420

430

440

450

460

470

a
c
c
u
m

u
la

te
d

re
w

a
rd

(d) Humanoid-v1

0.0 0.2 0.4 0.6 0.8 1.0
extra noise

290

300

310

320

330

340

350

360

a
c
c
u
m

u
la

te
d

re
w

a
rd

(e) Swimmer-v1

0.0 0.2 0.4 0.6 0.8 1.0
extra noise

1000

1050

1100

1150

1200

1250

1300

a
c
c
u
m

u
la

te
d

re
w

a
rd

(f) Ant-v1

0.0 0.2 0.4 0.6 0.8 1.0
extra noise

300

400

500

600

700

800

900

1000

1100

a
c
c
u
m

u
la

te
d

re
w

a
rd

(g) Hopper-v1

0.0 0.2 0.4 0.6 0.8 1.0
extra noise

−250

−200

−150

−100

−50

0

50

a
c
c
u
m

u
la

te
d

re
w

a
rd

(h) LunarLander-v2

Figure 2: Comparison of the performance under extra noises of 0, 0.1, and 1 times of the noise level respectively

Table 3: Parameters of SRACOS and noise level
Task #B− #B+ U-bits Noise Level

Acrobot-v1 20 2 1 28.0
MountainCar-v0 20 2 1 10.0
HalfCheetah-v1 50 3 3 200.0
Humanoid-v1 20 2 3 56.0
Swimmer-v1 50 4 2 10.0

Ant-v1 20 2 3 46.0
Hopper-v1 50 6 4 60.0

LunarLander-v2 50 5 3 50.0

often presented by a neural network (El-Fakdi, Carreras, and
Palomeras 2005). The object of the optimization is to maxi-
mize the accumulated reward of a policy. Specifically, a pol-
icy is represented by a neural network, which is constructed
by an input layer of the observation of the state, an output
layer of the available action and several other hidden lay-
ers. In each step, an agent will receive an observation of the
state, and implement an action according to its policy. After
that, it will get the reward of that action together with the ob-
servation of the next state. This interaction can be repeated
until the maximum step is reached or the game is over. The
accumulated reward is used to evaluate the performance of a
policy. The agent would have different accumulated rewards
if the initial state is reset to be different. Therefore, we re-
gard that the environment is noisy. To summarize, our goal
is to find the best parameter w for this neural network so as
to achieve the best performance. But the difficulty lies in that
the accumulated reward fN (w) used to evaluate its perfor-
mance can be noisy during the optimization. Thus, we use
the noise handling mechanisms to reduce the effect of noise
in this environment and compare their performances. The
settings of neural network and OpenAI Gym tasks is listed
in Table 2, where dState, #Actions, NN nodes, #Weights and
Horizon denote the dimension size of observation, the di-

mension size of action, the hidden layers of the neural net-
work, the total number of parameters in the neural network
and the maximum step, respectively.

We compare these mechanisms under the same parameter
setting of SRACOS, which is listed in Table 3, where #B−
and #B+ denote the size of negative set and positive set re-
spectively, and U-bits denotes the number of bits that can be
changed when generating a new solution from a positive so-
lution. From the experimental results of synthetic functions,
we note that VS achieves the best performance. Thus, we
combine the other mechanisms with MPS to see if they can
improve the performance of MPS better compared with the
value suppression. On OpenAI Gym tasks, the total number
of function evaluations is set to be 20, 000.

The parameters of these mechanisms are set as follows.
For sampling, the sample size is set to be 10. For threshold
selection, the noise level is estimated in order to choose a
proper threshold value. To estimate the standard deviation of
the noise, we draw 10 samples from the solution space, eval-
uate each sample 1000 times independently and compute the
standard deviation. The average standard deviation of these
10 samples is used to estimate the standard deviation of the
noise. The values are listed in Table 3 as noise level σ. We
round these estimated values to the nearest integers, and set
the threshold value τ = σ. For value suppression, we set the
maximum allowed non-update iterations u = 500, the re-
sample size v = 100, and the balancing parameter α = 0.5.

For each mechanism, the optimization algorithm is inde-
pendently run for 10 times. And in the end of each run, the
average accumulated reward of 1000 simulations is used to
estimate the performance of the found policy. The mean ε
and standard deviation of the 10 policies are reported in Ta-
ble 4. The mean value of a mechanism is in bold type if
not significantly worse than that of the mechanism with the
maximal mean value under t-test. We firstly compute the dif-
ference of 10 pair results of two mechanisms, Δi = εAi −εBi ,
then we compute the mean μΔ and standard deviation σΔ of

1452

Table 4: The mean value and the standard deviation of reward achieved by each mechanism. Each method is repeated 10 times.
The standard deviation of additional Gaussian noise is set to be 0, 0.1, and 1 times of the noise level in Table 3 respectively.
The mark ↓ means in this task the smaller reward the better, and ↑ means the larger reward the better. The mean value of a
mechanism is in bold type if not significantly worse than that of the mechanism with the maximal mean value under t-test,
where the significance level γ = 10%.

Additional Noise Task VS SAMPLING REEVAL+TS REEVAL TS MPS

0

Acrobot-v1↓ 80.76±1.38 85.51±3.46 94.03±13.10 140.58±120.76 121.74±40.45 86.50±4.45
MountainCar-v0↓ 134.92±3.87 141.94±8.29 181.07±22.61 199.86±0.40 158.67±17.10 150.85±13.33
HalfCheetah-v1↑ 1924.60±278.08 1408.54±383.85 1231.46±209.50 752.38±346.83 968.50±427.66 1388.27±479.94
Humanoid-v1↑ 461.85±23.92 459.53±22.81 473.05±34.70 444.60±39.12 433.87±32.57 422.40±41.84
Swimmer-v1↑ 360.51±3.45 342.02±20.25 355.40±3.38 348.84±9.70 336.94±16.33 289.97±71.70

Ant-v1↑ 1312.85±90.16 1130.54±55.35 1052.64±95.64 1056.09±78.96 1016.05±36.28 1126.89±123.11
Hopper-v1↑ 1111.91±117.69 1002.03±48.55 1003.73±12.84 641.23±406.58 630.02±242.86 873.87±186.46

LunarLander-v2↑ 80.40±54.51 -21.23±91.65 -191.23±45.77 -185.59±24.45 -172.36±97.17 -187.70±107.00

0.1

Acrobot-v1↓ 81.26±1.44 84.45±5.48 92.91±11.18 117.18±61.64 111.94±51.53 88.87±5.12
MountainCar-v0↓ 140.18±9.20 154.56±24.52 172.97±22.88 200.00±0.04 163.45±21.21 158.65±16.69
HalfCheetah-v1↑ 1603.95±469.26 1314.68±674.56 1025.08±372.57 572.12±755.55 573.43±687.99 1228.45±579.65
Humanoid-v1↑ 460.15±25.12 426.24±19.89 464.92±28.66 418.89±45.39 396.49±39.76 426.85±21.51
Swimmer-v1↑ 361.42±2.38 356.64±4.22 341.74±18.11 332.89±40.37 294.99±54.03 323.52±39.40

Ant-v1↑ 1179.63±93.48 1097.92±78.16 1006.45±22.73 1007.23±18.04 998.59±3.10 1097.26±95.47
Hopper-v1↑ 1098.84±92.24 1015.18±38.21 998.98±13.98 797.96±288.05 512.60±273.42 545.55±251.03

LunarLander-v2↑ 40.39±65.07 -38.60±69.64 -180.50±25.73 -220.36±81.02 -250.69±107.65 -240.22±79.50

1

Acrobot-v1↓ 84.28±2.05 86.89±2.54 96.53±12.12 162.16±119.12 126.18±52.74 123.88±77.87
MountainCar-v0↓ 136.99±5.02 167.77±27.89 162.97±22.92 200.02±0.34 175.12±24.49 175.80±16.00
HalfCheetah-v1↑ 1286.29±440.46 858.87±468.68 776.81±400.41 377.91±585.26 585.48±611.87 987.11±424.63
Humanoid-v1↑ 470.63±36.79 433.63±39.01 452.51±37.53 395.58±57.60 406.76±43.01 425.62±33.90
Swimmer-v1↑ 355.73±5.86 336.34±38.57 340.85±16.27 334.31±12.90 302.17±35.86 335.54±20.73

Ant-v1↑ 1010.00±15.27 997.07±3.57 1000.48±9.38 992.90±3.55 993.30±2.98 994.67±2.64
Hopper-v1↑ 996.14±70.48 1010.32±30.11 767.96±350.41 314.72±339.94 692.43±190.35 769.20±285.23

LunarLander-v2↑ 58.02±74.66 -81.39±73.79 -175.45±18.49 -196.36±70.33 -264.02±126.33 -258.27±91.00

Δ. If τ10 = |√10μΔ/σΔ| > 1.833, which is the critical
value of the two-tailed t-test with degree of freedom v = 9
and significance level γ = 10%, the two mechanisms are
considered as significantly different; otherwise they are not.
On the task of Acrobot-v1 and MountainCar-v0, the smaller
the mean value is, the better the performance is. On the other
tasks, the larger the better. SRACOS with the number of so-
lutions in the positive set #B+ > 1 (MPS) is chosen as
the baseline for comparison. We can find that VS performs
best on all the tasks, while SAMPLING and REEVAL+TS
get the best performance only on the Humanoid-v1 task.
REEVAL, TS and REEVAL+TS perform even worse than
the baseline on some tasks. Since VS achieves the best per-
formance within a given solution evaluation budget, com-
pared with the other mechanisms, it needs the least compu-
tational and time cost and thus is the most efficient one.

We then further add Gaussian noise on these tasks and ob-
serve their performances under additional noise. Two exper-
iments are conducted on different levels of extra noise. For
the first one, the standard deviation of additional Gaussian
noise is set to be 0.1 times of the noise level in Table 3. For
the second one, the standard deviation is set to be 1 times of
the noise level. We keep the other parameters as same as the
above experiment for OpenAI Gym. SRACOS with the num-
ber of solutions in the positive set #B+ > 1 (MPS) is cho-
sen as the baseline for comparison. The result is listed in Ta-
ble 4, and the comparison of mechanisms on different extra
noise is shown in Figure 2. We can observe that VS achieves
the best or the same best performance under t-test in all the
tasks, although in tasks like Ant-v1 and HalfCheetah-v1, it

performs worse than the environment without extra noise,
it achieves almost the same or even better performance in
other tasks. However, SAMPLING and REEVAL+TS per-
form worse as the extra noise increases in most tasks. And in
tasks like HalfCheetah-v1 and Swimmer-v1, they do not per-
form better than the baseline which does not handle noise.

Table 5: Hyper-parameter analysis of maximum allowed
non-update iterations u, where u ∈ {100, 500, 1000}. The
mark ↓ means in this task the smaller reward the better, and
↑ means the larger reward the better. The mean value of a
mechanism is in bold type if not significantly worse than
that of the mechanism with the maximal mean value under
t-test, where the significance level γ = 10%.

Task 500 100 1000

Acrobot-v1↓ 80.76±1.38 79.52±2.54 82.06±1.39
MountainCar-v0↓ 134.92±3.87 132.30±4.28 134.96±4.52
HalfCheetah-v1↑ 1924.60±278.08 1554.27±486.50 1773.89±548.06
Humanoid-v1↑ 461.85±23.92 460.39±34.97 455.46±35.26
Swimmer-v1↑ 360.51±3.45 360.91±2.33 359.35±5.09

Ant-v1↑ 1312.85±90.16 1239.24±119.53 1181.04±91.45
Hopper-v1↑ 1111.91±117.69 1046.35±27.49 1058.87±30.77

LunarLander-v2↑ 80.40±54.51 -23.02±62.22 21.04±80.90

Hyper-parameter Analysis

We also investigate the sensitivity of hyper-parameter u,
i.e., the maximum allowed non-update iterations, in OpenAI
Gym. The experimental setting is as same as that without
extra noise, and u is chosen from {100, 500, 1000}. In the

1453

previous experiments, u is always set to be 500. The results
are shown in Table 5.

Table 5 indicates that the results are not significantly dif-
ferent in most tasks whenever u ∈ {100, 500, 1000}. This
implies that the hyper-parameter maximum allowed non-
update iterations u is indeed not so sensitive. Moreover, if u
is too small, the confidence that the solution is trapped due
to the noise is low, and thus it may waste samples to accu-
rately evaluate the solution that would be replaced soon. If u
is too large, the confidence is high, but it may waste samples
in waiting the confidence. Therefore, the choice of u should
be balanced. According to the results of experiments, the de-
fault setting u = 500 should be fine in many cases.

Conclusion

In many real-world applications such as policy search in re-
inforcement learning, the environment is noisy and noise can
badly injure the performance of derivative-free optimization
methods. This paper proposes a generic, simple yet effective
noise handling mechanism called value suppression. The
value suppression can be embedded into most derivative-free
optimization methods to handle and reduce noise. To verify
the effectiveness of this mechanism, we inject it into one
state-of-the-art derivative-free optimization algorithm SRA-
COS and result in suppressed SRACOS (SSRACOS). Exper-
imental results in both synthetic functions and controlling
tasks in OpenAI Gym indicate that value suppression could
perform better than other popular noise handling mecha-
nisms, e.g., sampling and threshold selection equipped with
re-evaluation. In the future, we will further explore if value
suppression can be helpful under noise-free environment. In-
tuitively, value suppression may help the algorithm jump out
of the local optima even if there is no noise.

References

Aizawa, A. N., and Wah, B. W. 1994. Scheduling of genetic
algorithms in a noisy environment. Evolutionary Computa-
tion 2(2):97–122.
Arnold, D. V., and Beyer, H.-G. 2006. A general
noise model and its effects on evolution strategy perfor-
mance. IEEE Transactions on Evolutionary Computation
10(4):380–391.
Bartz-Beielstein, T. 2005. Evolution strategies and threshold
selection. In International Workshop on Hybrid Metaheuris-
tics, 104–115.
Beielstein, T., and Markon, S. 2002. Threshold selection,
hypothesis tests, and doe methods. In Proceedings of the
2002 IEEE Congress on Evolutionary Computation, 777–
782.
Branke, J., and Schmidt, C. 2004. Sequential sampling in
noisy environments. In Parallel Problem Solving from Na-
ture VIII, 202–211.
Doerr, B.; Hota, A.; and Kötzing, T. 2012. Ants easily solve
stochastic shortest path problems. In Proceedings of the 14th
Annual Conference on Genetic and Evolutionary Computa-
tion, 17–24.

El-Fakdi, A.; Carreras, M.; and Palomeras, N. 2005. Di-
rect policy search reinforcement learning for robot control.
In Proceedings of the 8th International Conference of the
CCIA, 9–16.
Gießen, C., and Kötzing, T. 2016. Robustness of populations
in stochastic environments. Algorithmica 75(3):462–489.
Goh, C. K., and Tan, K. C. 2007. An investigation
on noisy environments in evolutionary multiobjective opti-
mization. IEEE Transactions on Evolutionary Computation
11(3):354–381.
Guo, W.; Liu, G.; Chen, G.; and Peng, S. 2014. A hybrid
multi-objective pso algorithm with local search strategy for
vlsi partitioning. Frontiers of Computer Science 8(2):203–
216.
He, J., and Yao, X. 2001. Drift analysis and average time
complexity of evolutionary algorithms. Artificial Intelli-
gence 127(1):57–85.
Hu, Y.-Q.; Qian, H.; and Yu, Y. 2017. Sequential
classification-based optimization for direct policy search. In
Proceedings of the 31st AAAI Conference on Artificial Intel-
ligence, 2029–2035.
Jin, Y., and Branke, J. 2005. Evolutionary optimization in
uncertain environments-a survey. IEEE Transations on Evo-
lutionary Computation 9(3):303–317.
Markon, S.; Arnold, D. V.; Back, T.; Beielstein, T.; and
Beyer, H.-G. 2001. Thresholding-a selection operator for
noisy es. In Proceedings of the 2001 IEEE Congress on
Evolutionary Computation, 465–472.
Parkinson, D.; Mukherjee, P.; and Liddle, A. R. 2006.
Bayesian model selection analysis of wmap3. Physical Re-
view D 73(12):123523.
Qian, C.; Yu, Y.; and Zhou, Z.-H. 2015a. Analyzing evo-
lutionary optimization in noisy environments. Evolutionary
Computation 1–41.
Qian, C.; Yu, Y.; and Zhou, Z.-H. 2015b. Pareto ensemble
pruning. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence, 2935–2941.
Snoek, J.; Larochelle, H.; and Adams, R. P. 2012. Practical
bayesian optimization of machine learning algorithms. In
Advances in Neural Information Processing Systems, 2951–
2959.
Stagge, P. 1998. Averaging efficiently in the presence of
noise. In Parallel Problem Solving from Nature V, 188–197.
Yu, Y., and Zhou, Z.-H. 2008. A new approach to estimat-
ing the expected first hitting time of evolutionary algorithms.
Artificial Intelligence 172(15):1809–1832.
Yu, Y.; Qian, H.; and Hu, Y.-Q. 2016. Derivative-free opti-
mization via classification. In Proceedings of the 30th AAAI
Conference on Artificial Intelligence, 2286–2292.

1454

